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Since black holes radiate with a thermal spectrum and therefore possess a 
radiation pressure, Boltzmann's derivation of Stefan's Law can be applied to 
black holes. In order that the entropy be proportional to the surface area of the 
black hole, the pressure must be negative. If the second law is not to be violated, 
then the temperature must also be negative. This leads to a canonical formulation 
for fluctuations. A comparison with other approaches is given and doubts are 
raised concerning the validity of conventional black hole thermodynamics. 

1. S T E F A N ' S  LAW F O R  BLACK B O D I E S  

Bol tzmann  (1884) derived Stefan's  law of thermal  rad ia t ion  from a 
global  second law. Bol tzmann ' s  der ivat ion of Stefan 's  law is based on an 
app l ica t ion  of Carno t ' s  cycle to the rad ia t ion  enclosed wi thin  movable  
reflecting walls. 

Let 

;0 e(r) = O(~', T) a~, (1) 

be the total  "ae therea l"  energy per  uni t  vo lume in a cavity of vo lume V. 
Bo l t zmann  wrote the second law in the form 

6~ dS(eg, v)=l {d(eV)+ PdV} (2) 
T 

where 8~ is the heat  that  must  be added  while the vo lume undergoes  an 
al terat ion by the a m o u n t  d V  at cons tant  t empera ture  (Lord Rayleigh, 1902). 
Using the facts that for radia t ion,  as well as aerial vibrat ions,  the pressure 

P =�89 (3) 
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and that e is a function of  the temperature T only, we have that the exactness 
condition is 

O ( V d e ~  0 

or 

de 4e 
aT -  T (5) 

Integrating (5) gives Stefan's law 

e = o'T 4 (6) 

where or is 4 /c  times Stefan's constant. 
An even neater proof  of Stefan's law does not make any assumption 

about the energy density, which only invokes the constitutive relation P = �89 
is based on the global form of the Gibbs-Duhem relation 

Introducing the constitutive relation leads immediately to (5) and hence to 
Stefan's law. 

2. LOCAL FORM OF STEFAN'S LAW 

If the second law (2) is to hold globally, it must also hold locally; that 
is, for each frequency of the radiation field, namely 

1 
dg~(p~V, V) =-~ {d(p~( T) V) + p~( T) dV} (8) 

However, whereas (2) is a purely thermodynamic relation, (8) lies midway 
between thermodynamics and statistical mechanics. In particular, there is 
no constitutive relation between the pressure per mode p~ and the energy 
density per mode p~. The only relation between the two is in the form of 
the Gibbs-Duhem relation 

whose integral is 

(9) 
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The G i b b s - D u h e m  relation (9) ensures the existence of the integral 

1 " 
5P,(p~V, V ) = ~ ( p ~ + p ~ ) V  (11) 

Notwithstanding the fact that both pv and p~ are functions of  both the 
frequency and temperature,  the exactness conditions cannot be expressed 
in terms of  the triplet u, V, T, since v is not a thermodynamic variable, 
either extensive or intensive. It is for this reason that we indexed the entropy 
in (11) by the frequency rather than considering it as a bona  fide thermo- 
dynamic variable. This is supported by the fact that the G i b b s - D u h e m  
relation (9) secures the exactness condition when V and T are taken as the 
independent  variables. 

In order to establish the validity of  (11), it suffices to show that the 
sum over all modes coincides with the expression in (2). To accomplish 
this, an expression for the pressure is required. At this point, we must take 
recourse to a model as supplied by statistical mechanics, just as Planck 
unawaringly did in his treatment of  the interaction of electromagnetic 
radiation and material "oscillators." Because the photon chemical potential 
vanishes for thermal radiation, the canonical and grand canonical ensembles 
coincide and we can use the work potential, per unit volume, 

) Pv( T)  = m k T  in ~n=o e--nhu/kT 

= - m k T  In (1 -- e -h~/kT) 

=-- k T l n  ~ , (T)  (12) 

for the pressure per mode,  where the density of  states in the frequency 
interval dl, is m = 87rv2/c 3, is Boltzmann's constant, and c is the velocity 
of  light. In the last line of  (12), we have expressed the pressure per mode 
in terms of  the partition function per mode sc~. With this expression for 
the pressure, the G i b b s - D u h e m  relation (9) gives the energy density per 
mode as 

mhv 0 In ~ 
p,,( T)  = eh,,/kT_ 1 - Off (13) 

which is Planck's radiation law, which he discovered some 15 years after 
Boltzmann's  p roof  of  Stefan's law. We have introduced the inverse tem- 
perature as kfl = 1/T. Finally, integrating (12) over all frequencies gives 

P ( T )  = p v ( r )  d~, = �89 (14) 



504 Lavenda and Dunning-Davies 

This is a global constitutive relation of densities which are related through 
the Gibbs-Duhem equation (7). 

The entropy per mode (11) can thus be expressed as the Legendre 
transform of the logarithm of the partition function per mode ~:~ with respect 
to ~ as 

^ a In ~',,] 
~,,(p,,V, V) = k V  In ~:,,-/.J--~-~-j ' (15) 

We may thus define the free energy ~ of the mode of frequency v as 

o~,,( V, T)  = mk  T V  In(1 - e -h~'/kr) (16) 

Denote by ff~ the average number of particles per unit volume. Its 
relation to the energy density is 

p,,( T)  = fi,,( T ) h v  (17) 

Introducing (17) into (8) gives 

d6g.( fi~V, V) = T {(hurl,, + p~,) d V  + huV  dfi.} (18) 

Analogous to the global Gibbs-Duhem relation (7) there is the local Gibbs- 
Duhem relation per mode (9), where the energy density is given by (17). 
Evaluating (9) with the aid of (12) yields 

m 

fi;( T)  - eh./kr - 1 (19) 

In the same way that the global Gibbs-Duhem relation (7) gives Stefan's 
law (6), the Gibbs-Duhem relation per mode (9), gives the Bose distribution 
(19) when the pressure per mode is given by (12). We may consider (19) 
as the condition for a dynamical equilibrium between the osmotic pressure 
force, proportional to kd In ~ ,  and the thermal force, proportional to 
d ( 1 / T ) .  

Because photons do not interact with one another, they cannot achieve 
thermal equilibrium by themselves. Thermal equilibrium is achieved when 
the chemical potential of the photons is equal to the vanishing chemical 
potential of what they interact with, for example, the chemical potential of 
electron-hole pairs in a light-emitting diode (Wiirfel, 1982). An applied 
voltage to a p - n  junction brings the system out of equilibrium with the 
consequence that the photon chemical potential is nonzero. For nonthermal 
radiation, the entropy per mode (11) must be generalized to 

1 
~ ( p ~ V ,  V, fi~V) =-~ ( p~ + p ~ -  tzfi~) V (20) 

1 
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where/~ is the photon chemical potential and 

p~( T) = - m k  T In (1 - e -(h~-~)/kT) (21) 

is the photon pressure in mode u. 
On account of the first-order homogeneous property of  the entropy, 

(20) can be scaled according to 6e( p~V, V, ~ r )  = VSC~(p~, 1, ff~) --- s~( p~, rip), 
where tip = N~/V. The total differential of  s~ is 

I 
\Oily/,~,~,~ \ O p J  o,n~ 

but because p~ and ft. are not independent variables, since they are re- 
lated linearly by (17), the entropy differential can be expressed as ds~ = 
(Os/O&,) v da~, where 

(o q =(osq +(osq 
On~./ v \Onv/ V,p~ \Opt.~ v,~,, Onp 

hv 
- + ( 2 2 )  

T T 

3. ENTROPY AND PROBABILITY 

The general relationship between the entropy and probability is 
(Lavenda, 1988) 

k l n f ( n ;  ~ ) = - ( n - f l u )  (O&] -s~(f f~)+s(n)  (23) 
\3ff~/~ 

where f (n ;  ~ )  is the law of  error for which the mean of  the distribution is 
the most probable value. Provided m and n are sufficiently large to warrant 
Stirling's approximation, the "fluctuation" entropy density s(n) is the same 
function of  the random quantity n that the entropy density per mode s~(ff~) 
is of the mean value ff~ (Lavenda and Dunning-Davies, 1990). In contrast 
to (23), Boltzmann's principle is 

s(n) = k In ~ ( n )  (24) 

where gl(n) is the number of  ways that n indistinguishable particles can be 
put into m cells in the case of  Bose statistics, gl can therefore not be 
considered as a probability at all, but rather a large positive integer. The 
adjective " thermodynamic"  has been reserved to qualify such a "prob- 
ability." Now the connection with entropy is achieved by maximizing 
Boltzmann's principle (24), 

s~(r7~) = k In ~max (25) 
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where it turns out that the maximum of f~(n) occurs at n = a, so that 
~max = t~('~). 

With the negative binomial distribution as the law of error, the entropy 
density per mode is given by 

{ l n ( ~ " + m l + m l n ( ~ - - ~ ) }  (26) s ~ ( ~ ) = k  fi~ \ r~ / 

Taking the derivative of  (26) and setting it equal to (22) gives 

m 
~ ( T )  = (27) 

e ( h v - ~ ) / k T  - -  1 

which is the generalization of  the Bose distribution (19) to nonzero chemical 
potential. 

4. STEFAN'S LAW FOR BLACK HOLES 

The derivation of Stefan's law for black holes leads to an understanding 
of  the nature of  the equilibrium that is established between the black hole 
and surrounding . . . . . .  omcr~-uouy'--~ . . . .  ,au,,~u,,,,'~;"*;~" which . . . . . . . . .  ;~ n'~"~snry in order to be 
able to define a temperature. 

Let the black hole be enclosed in a volume V >  Vs, where V~ is the 
Schwarzschild volume, which contains a certain amount of radiant energy. 
The change in the entropy of a black hole caused by the absorption of  
radiant energy is 

= 1 {d(eV) + PdV} (28) d9 ~ 

The condition that (28) be a perfect differential is 

a ( V d e ~  0 (eT______P) 
a V \  T dT/  =O--T (29) 

The only relation that will give an inverse dependence of  the energy density 
on the temperature which the conventional interpretation of black-hole 
thermodynamics requires is 

e = - 2 P  (30) 

since inserting (30) into (29) gives 

de e 
dT T (31) 
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Integrating (31) gives Stefan's law for black holes as 

OL 
e = - -  (32) 

T 

or e. T = const, and a is some constant to be determined. 
It is clear from the constitutive relation (30) that the pressure must be 

negative, indicating that the object under consideration is contracting spon- 
taneously so as to increase its entropy. Spontaneous contraction of  an 
imploding star would lead to the formation of  a new surface, leading to a 
metastable state which in the case of  a black hole would be its horizon. 
Negative pressures in a cosmological model are not unknown (McGrea, 
1951). General relativity does not restrict the pressure to positive values 
(Hawking and Ellis, 1973, p. 90) and (30) does not violate the dominant 
energy condition, which states that the velocity of energy flow is always 
less than the speed of light. For an energy density which scales as the inverse 
square of  the radius of curvature of the universe, the adiabatic condition 

y i e l d s  a negative pressure (G6rnitz, 1988). A negative pressure has even 
been implicated in the inflationary scenario of  the hot big-bang cosmology 
(Guth, 1981). However, if the second law is not to be invalidated, a negative 
pressure cannot be "the driving force behind exponential expansion" (Guth, 
1981) because P < 0  implies (a~/aV)e < 0  and the system would spon- 
taneously contract in order that its entropy increases (Landau and Lifshitz, 
1969, p. 42). 

In the process of the collapse of  an object to form a black hole, energy 
is radiated away in the form of gravity waves. By applying the techniques 
of  second quantization, Hawking (1974) has shown that the radiation settles 
down, as the collapse winds up, to the thermal radiation that a black body 
would have. Thus, E is the total mass-energy of  a black hole, which includes 
the energy of  black-body radiation and gravitational radiation, since the 
black hole can still produce gravity waves when it swallows other matter, 
which should be most intense when two equal-mass black holes collide. 
Electromagnetic radiation produces a radiation pressure P that is equal to 
one-third of  its energy density. We shall assume that the pressure of  matter 
is only a minute fraction of  its mass-energy density, so that it can be neglected 
for a black hole as well as for matter under ordinary circumstances (Tolman, 
1934, p. 273). Although this is a reasonable assumption, it is not clear 
from Hawking's conjecture why gravitational radiation, with a negligible 
radiation pressure, should settle down, in the final phase of collapse, to radi- 
ation that has a thermal spectrum with a definitely nonnegligible radiation 
pressure. 

It has long been known (Bartoli, 1884) that a radiation pressure is 
needed in order not to violate the second law when radiant energy is 
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transported from a cold body to a hot one by means of a moving mirror. 
A pressure must be exerted on the mirror by the light. That heat cannot be 
transported from a cold to a hot body without any other work being done 
on the system means that the constant a appearing in Stefan's law (32) 
must be negative (Lavenda and Dunning-Davies, 1988). The greater the 
radiated energy, the greater must be the temperature and this can only be 
true if the temperature is negative. The constant a must have units of  energy 
squared divided by Boltzmann's constant. Setting a = - o ' ~ / k  < 0 allows us 
to write Stefan's law (32) as 

2 
or  e 

e = - - -  (33) 
kT  

The Gibbs-Duhem relation (7) ensures that the integral of (28) exists 
and is given by 

b ~  (34) 

Introducing (30) and (33) for the black-hole temperature into the black-hole 
entropy (34) gives 

e 2 E 2 

~e= -k2or~ e v = - k 2 v o r ~  e (351 

The negative sign in (35) should cause no concern when it is recalled that 
only entropy differences have any physical meaning in thermodynamics. 
And although the black-hole entropy is a quadratic function of the radiation 
energy, it is nonetheless an extensive quantity. This expression (35) bears 
only a formal resemblance to the expression proposed by Bekenstein (1972) 
in which he set the black-hole entropy proportional to the surface area. For 
a Schwarzschild hole, the surface area is proportional to the square of the 
mass. Bekenstein's expression is based on an analogy between Hawking's 
area theorem, stating that the surface area of the event horizon cannot 
decrease in any dynamical process, and the second law. Furthermore, the 
temperature defined thermodynamically as 

. . . .  k (36) 
v T Vo -2 

is an intensive thermodynamic variable. 
In the conventional formulation of black-hole thermodynamics, it is 

concluded that black holes grow hotter when they radiate heat. It has long 
been known that systems in contact with a heat reservoir cannot have 
negative heat capacities (Lynden-Bell and Wood, 1967). It is precisely 
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because of  the negative sign in (35) that the heat capacity at constant volume 
C~ appearing in the expression 

= -  (T2Cv) -1 -  Vo.~<O (37) OE2Jv 

is positive. But, in the canonical ensemble kT2Cv is the mean square 
fluctuation in energy and this identifies o-2 as the second moment  of  the 
distribution. Finally, eliminating the energy density between (30) and (33) 
gives 

2 
O" e 

P - 2 k T  (38) 

which is the equation of  state for a black hole. 
We now compare the sum of the individual radiation entropies of  the 

two black holes (labeled by indices 1 and 2) and each of which is located 
somewhere in a box of volume V, with the entropy of a black hole which 
is formed by the collision and coalescence of  two black holes (characterized 
by no indices) in a box of twice the volume. The box is assumed large 
enough so that its volume is greater than the Schwarzschild volume of the 
combined black hole. The Legendre transform of the entropy with respect 
to the energy is 

9~ - \ ~ ]  v ~ = k In ~f;(fli), i = 1, 2 (39) 

where 

In ~i 1 ~ 2  2 Tr  = ~P i o ' e v  (40) 

is the logarithm of the partition function. From (40) it is clear that the 
radiation pressure of  the individual black holes will be the same if their 
temperatures are the same, since we have assumed that they are enclosed 
in equal volumes. In the canonical ensemble it is more natural to consider 
the entropy 

~i = k{,GE~ + In ~ }  (41) 

as a function of ]3i = k-l(OSfJOG)v rather than the energy G.  
When two black holes collide they can emit gravity waves. The conserva- 

tion of energy requires 

E = Ebh q- Eg - =  E1 + E2 (42) 

where E is the sum of  mass-radiation energy of the final black hole gbh 
and the gravitational radiation energy, Eg. Since we have assumed that the 
radiation pressure of  gravity waves is negligible with respect to the radiation 
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pressure of thermal radiation, which is one-third its energy density, the 
radiation pressure of the combined black hole will have the same pressure 
as the individual black holes given in (38). Since the individual black holes 
do not emit gravity waves, the radiation pressure of gravitational radiation 
is negligible in comparison to the thermal radiation pressure. Hence, the 
contribution to the entropy of the combined black hole due to gravitational 
radiation is approximately 5eg ~ k,sEg. Consequently, 

~,(,8) + 5r = k{ , sE l+ln  Y, + ,sE2+ln  ~2} 

= k{,8(Ebh + Eg) + ln  Y} 

= ~ f b h ( , 8 )  + G ( , 8 )  = (0/9(,8) (43) 

where the entropy of the combined black hole 5r has been decomposed 
into a black hole entropy 6ebb that it would have in the absence of gravita- 
tional waves and a contribution 5eg due to gravitational radiation that has 
a negligibly small radiation pressure. 

Since 5r achieve their minima at ,8i, 0~ 5e~(,8~) we have 

~( ,8)  --> .9~ (,8 ,) + .9~ (44) 

when the two black holes are not initially at the same temperature. Note 
that we cannot say anything about the black hole entropy 5ebb in relation 
to the individual entropies when there is significant loss of energy through 
gravitational radiation. If  the gravitational radiation pressure were of the 
same order of magnitude as the mass-energy density, no inequality could 
be derived between the final and initial entropies. 

Barring this case, the second law (44) may be seen to imply 

E2bh ~ E 2 <-- 2(E~ + E 2) (45) 

on account of the negative quadratic form of the entropy of  a black hole 
(35) and the fact that the final volume is twice as great as the individual 
volumes enclosing each of  the black holes. If the two black holes have the 
same mass-energy, E1 say, then the maximum gravitational energy that can 
be released upon collision is 2Ea--Ebh. Since radiant energy must be 
included in the conservation of energy, it is doubtful whether the area 
theorem involving only the rest energy of  a Schwarzschild black hole has 
any connection with the second law. 

In fact, the entropy can provide no information on how the areas of 
black holes behave when they collide and coalesce to form a single black 
hole. If the second law could be used to establish the area theorem, then 
it would be necessary to show that the entropy of  a black hole formed from 
the coalescence of two holes is the sum of the entropies when the individual 
black holes initially have the same surface gravity, provided, again, that 
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the gravitational radiation pressure can be neglected. This would be 
analogous to the additivity of the entropy (43) when the individual systems 
are initially at the same temperature. 

Radiation processes are, in essence, random phenomena. Let e denote 
the random energy density whose average value is e. On one hand, we have 
the expression for the partition function (40), while on the other hand, the 
partition function is the Laplace transform of the "structure" function ~,  

~(~) = f e-t3~f~(e) de (46) 

where the lower limit of integration can be extended to -oo (Blanc-Lapierre 
and Tortat, 1956). These two facts imply that the "structure" function is 
given by the normal density, 

f l ( s )  = (27rO'2e/V)-1/2 exp( - s 2 V/Z~r2e) (47) 

Then, in view of the error law (23), the probability density function for the 
radiant energy of  a black hole is given by 

f(e; e) = (27rO'2e/V) -1/2 exp[ - (e - e) 2 V/Zo-2e] (48) 

The only information that went into the derivation Gauss' law of error (48) 
is that the entropy has the quadratic form (35). This, in turn, followed from 
expression (30) relating the mass-energy density of a black hole to the 
(negative) radiation pressure and the form of Stefan's law (33). Therefore, 
the probability density for the radiant energy of a black hole will have the 
Gaussian form (48). 

The Gaussian law of  error (48) is ordinarily the small-fluctuation limit 
of each of  the two forms of statistics. However, we have derived it without 
any assumption regarding the size of the fluctuations and, consequently, it 
is to be considered as an exact relation. It therefore follows that if it is 
possible to express the average energy density e in terms of  the mean number 
of  quanta ~i~ as 

e ( r )  = h ,,,~(r) dv (49) 

then the ~ will not have the form of either of the two known forms of 
statistics. 

5. DISCUSSION 

The scope of the foregoing analysis has been to draw some thermo- 
dynamic conclusions from Hawking's theorem that "black-hole surface area 
cannot decrease" without violating the second law of  thermodynamics, 
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which states that "heat  cannot spontaneously flow from a cold to a hot 
body without any other work being done on the system." It has often been 
claimed that the area theorem, being classical in nature, can be violated by 
quantum processes and, in particular, the thermal radiation discovered by 
Hawking. One then turns to a generalized second law in which the increase 
in the exterior entropy due to the radiation offsets the entropy decrease of 
the black hole (Bekenstein, 1975). This appears a little odd insofar as Planck 
never found it necessary to invoke the entropy of the universe in his 
application of the second law to black-body radiation. If the entropy is to 
have a thermodynamic meaning, it cannot be determined solely from the 
mass, charge, and angular momentum of an object. The notion of heat 
transfer has to appear somewhere in the derivation and, in this sense, 
conventional black-hole thermodynamics shares a common feature with the 
introduction of entropy in general relativity for nonadiabatic models. 

If  a black hole does radiate with a thermal spectrum, it must necessarily 
satisfy the black-body relation (3) and not (30). Yet, it is precisely that 
relation which is required to give an inverse relation between the energy 
density and temperature in order that the entropy be proportional to the 
surface area of a black hole. 

Cracks in the argument relating the entropy of  a Schwarzschild black 
hole to the square of its mass have been found. Hawking (1976) has noticed 
that "al though the canonical ensemble does not work for black holes, one 
can still employ a microcanonical ensemble of a large number of similar 
insulated systems each with a given fixed energy." The reason for this is 
that having taken the negative of (35) as the expression for the entropy, 
the structure function, instead of being an exponentially decreasing function 
of  the square of the energy as in (47), is an exponentially increasing function 
of  the square of the energy and as such it cannot be overpowered by the 
thermal factor exp(- /3e)  in the expression for the partition function (46) 
in order to make the latter a finite quantity. Yet, a microcanonical ensemble 
must be of  finite, macroscopic extension and there is nothing to prohibit 
us from focusing on a small, but macroscopic, part of it that is in thermal 
contact with the rest. This is the usual way that a canonical ensemble is 
defined. That this cannot be accomplished puts grave doubts on the 
expression for the black-hole entropy and its relation to a " thermodynamic"  
probability (Hawking, 1976). In thermodynamics such systems are outlawed 
precisely by the fact that the heat capacity must be positive. 

We have retained the conventional black-hole thermodynamic func- 
tional form of the expression for the entropy and temperature while renounc- 
ing a negative heat capacity. The price we paid is extremely high, for it 
necessitates the introduction of both a negative radiation pressure and 
temperature. If such systems exist, they can only be metastable. The question 
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then arises of  how such systems can be placed in thermal contact with other 
systems in order to achieve an overall stable system. The problem is aggra- 
vated even more if one wants to hold on to a positive temperature while 
relinquishing a positive heat capacity for a black hole. Hawking (1976) has 
considered the thermal equilibrium stability requirement for a black hole 
to be in equilibrium with black-body radiation in a volume greater than the 
Schwarzschild volume. Using the method of a composite system, he derived 
the equality of the temperatures from the vanishing of the first variation 
of the entropy of the composite system, while he obtained an inequality 
for the temperature to satisfy from the criterion that the second Variation 
be negative. A thermodynamic stability criterion which yields a critical value 
of  the temperature is completely foreign to Carath6odory's use of composite 
systems in order to show that the entropy of a less constrained system 
should not be inferior to the sum of the entropies of the individual subsys- 
tems. But those subsystems must be of the same type, for otherwise the 
temperature would have to obey an inequality for thermodynamic stability. 
All that can be deduced when two nonidentical systems are placed in thermal 
contact is that the temperature of the two systems must be equal and the 
second variations of their entropies must each be less than zero in order 
for the "composi te"  system to be thermodynamically stable. But this is 
impossible for a black hole, which possesses a negative heat capacity. 
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